1)、盾构下穿建构筑物的技术准备工作
(1)、在施工前对建构筑物、管线进行充分调查。收集有关资料,包括建构筑物的设计图纸、竣工图进行研究分析,并对建构筑物进行实地调查分析,必要时实施探槽调查的方法。
(2)、经过调查后应明确建构筑物的位置、结构形式及尺寸、何种基础、建筑年代、老化程度、使用状态、产权归属、与盾构隧道的距离及相对位置关系等;对地下管线通过调查应明确管线的功能性质、材质、接口形式、管道输送介质、老化程度、埋深以及产权归属、与盾构隧道的距离及相对位置关系等基本情况。
(3)、为避免盾构通过后不必要的纠纷,在盾构通过前根据建构筑物的产权情况、重要性、盾构施工对其的影响程度,对部分建构筑物应选择有资格的鉴定单位对建构筑物进行鉴定,在通过后建议对建构筑物重新进行鉴定。
(4)、根据地质勘察情况或根据盾构推进过程中的地质变化情况,对建构筑物周边地质进行补充详细勘察,明确地形情况、基础土层结构、各土层土体性质、地下水情况等。
(5)、根据调查情况,分析建构筑物或管线的变形和应力允许值。
(6)、根据建构筑物、管线以及地质补勘的结果,结合盾构的形式、盾构隧道与建构筑物的距离以及相对位置关系和施工技术能力以及项目的应急能力制订详细周密的施工方案。为保证施工方案的合理性应邀请有关专家对方案进行讨论审查;为确保其可行性和得到贯彻落实,应邀请建构筑物的所有者或管理者、主要施工作业人员参加方案讨论,根据讨论结果修改盾构下穿或旁通穿过建构筑物、管线的施工方案。
(7)、与其他地层相比,在砂卵石地层中,刀具普遍磨损严重,初步判断,一盘滚刀能掘进约100~150m。隧道穿越的地层主要为<2-8>、<3-7>卵石土地层。盾构机连续掘进、出碴量正常地层不会出现问题。但盾构机一旦停机,在恢复推进或开仓清碴刀盘转动时,地层损失控制困难。因此在盾构即将通过建构筑物前应对刀具进行全部更换并对设备进行全面检修,选定同步注浆浆液的配比和凝固时间,以保证盾构机连续、快速通过,且使盾尾空隙得到及时有效的填充。
(8)、加强施工过程中建构筑物和土体监测。其中建构筑物监测项目包括沉降监测、倾斜监测和裂缝监测,土体监测项目包括土体变形监测、水位监测等。监测点应提前布置,稳定后在盾构达到一周前开始实施监测工作。在通过建筑物时,专人实行24小时监测,每3~4h监测一次。测量结果及时反馈给控制室。

2)、盾构下穿建构筑物时的施工参数选择与控制:
为确保建构筑物、管线的安全,在盾构掘进施工时应严格对盾构施工参数监测,包括盾构推力、出土量、注浆填充率、注浆压力、盾构姿态等。
盾构下穿建构筑物掘进时,盾构施工参数做如下控制:
(1)、推进速度和推力控制
盾构掘进速度控制在30~40mm/min,盾构推力控制在1000KN~1200KN。确保盾构连续掘进、快速通过,减小对地层的扰动。推力过大易造成地面隆起,过小则地面沉降加大,盾构掘进速度亦不易太快,以免同步注浆量不足。
(2)、严格控制出土量
成都地铁建设中,目前主要选用德国海瑞克盾构机,面板式刀盘、刀盘开口率25~28%、刀盘外径6.28m、有轴式两级螺旋出土器;盾构隧道主要采用的管片幅宽(f=1.5m)、砂卵石松散系数为0.8(包含砂卵石间的含水量),计算每环出渣量:V=(D1/2)2π×f×1/0.8=(6.28/2)2π×f×1/0.8=46.438×1/0.8=58m3。通过建筑物期间,派专人监控出土量,每环出碴量控制在58m3以内(环幅宽按1.5米,含水较少时应控制在55~56m³。
(3)、保证同步注浆饱满度
同步注浆的注入率应控制在200%~300%之间,注浆压力2~4bar,最大程度利用同步注浆填充满管片背后的间隙。成都地铁盾构隧道采用幅宽f=1.5m、外径D2=6.0m,钢筋混凝土管片。Q=[(D1/2)2π×f-(D1/2)2π×f] ×150%=(46.438-42.39) × 200~300%=8~12 m3。
在同步注浆过程中应严格控制注浆压力,注浆压力过大易引起地面隆起。为保证管片背后间隙的浆液不流失并尽快凝固,根据盾构机的配置情况尽可能选择双液浆,选择单液浆应通过配比调整,尽可能缩短浆液凝固时间、提高结固体强度。
(4)、二次注浆
在同步注浆的同时进行二次注浆,确保填充效果。注浆管片位置盾尾后3~4环的位置。注浆点位以在拱顶点位注浆为原则。