摘要:螺旋锚基础作为一种原状土基础,具有施工快捷、机械化程度高、环境影响小等特点,适用于我国青藏高原冻土区。该冻土区输电塔螺旋锚基础适宜采用螺旋锚倾斜布置形式,承台采用钢筋混凝土预制或钢制的结构,这种型式结构简单、受力清晰,可有效发挥螺旋锚承载特性及其承载优势。输电杆基础螺旋锚适宜采用竖直或小角度倾斜的布置形式,同时承台具备水平承载和抵抗倾覆弯矩作用的能力,基础按最不利状态进行设计,采取涂覆防腐蚀涂层、预留腐蚀裕量等防腐设计措施。在青藏高原输电线路工程中具有较好的应用前景。

关键词:青藏高原;输电线路;多年冻土;螺旋锚基础;结构型式

螺旋锚基础是一种由螺旋锚、上部承台等构件组成的基础型式,利用深层土体抵抗上部结构作用的锚固结构体,其中螺旋锚是由锚杆、锚板(又称锚叶或锚盘)、锚头等构成(如图1所示)。螺旋锚施工时不必开挖基坑,通过锚杆施加扭矩,将螺旋状锚板旋拧至较深土体中,对土体的扰动小,能充分发挥原状土体固有强度,提高承载能力。1833年,螺旋锚最先使用在英格兰潮汐内湾作为灯塔基础。有关理论及设计计算研究方面,Wilson(1950年)开展螺旋锚承载力与沉降方面研究,提出了扭矩和桩的承载力的关系以及设计公式[3]。Meyerhof(1968年)对螺旋桩的承载力问题提出了塑性理论,并提出了抗拔力的计算公式[4]。G.H.Johnston等人(1974年)在多年冻土层中开展了螺旋锚试验研究,分析了承载机理[5]。M.P.Mitsch等人(1985年)分析了螺旋锚在砂土、粉土和粘土中的抗拔性能,提出了设计方法[6]。20世纪90年代,S.NarasimhaRao等人对螺旋锚在粘土及淤泥中的力学性能进行了试验研究[7];AshrafGhaly等人分析了锚叶形状、砂特性、安装深度等因素对螺旋锚安装扭矩值的影响,并建立了安装扭矩计算理论模型,以及安装扭矩与抗拔承载力间的关系,完成了不同密实度砂土、倾斜度锚杆抗拔试验,研究了承载机理,提出了斜锚的抗拔承载计算方法[8-9]。至此,有关螺旋锚的理论研究成果初步形成了较为完整的体系。工程应用方面,二十世纪五十年代螺旋锚逐渐在国外发展成为工程中的实用技术。A.B.Cha-nee公司在输电线塔的基础工程中采用螺旋锚,1959年制定了第一个有关螺旋锚的标准,螺旋锚标准化技术逐步形成。目前,在美国、加拿大、墨西哥、澳大利亚等国家,螺旋锚广泛应用于工程施工。前苏联在20世纪60年代也开始将螺旋锚应用于桅杆和塔的基础[2]。我国螺旋锚使用始于20世纪90年代初,用作触探试验加载的反力装置。武汉水利电力学院王钊教授等开始将螺旋锚技术应用于基坑支护和输电线塔基础,到21世纪初,一些小型螺旋锚在煤巷支护领域开始应用。总体来看,在我国水利、电力、建筑、煤炭行业都开展了螺旋锚技术试验研究工作[2,10-12]。2011年国家电网公司制定并发布了有关输电线路螺旋锚基础设计、施工及质量验收的技术标准[13]。螺旋锚具有制造简单、安装和施工方便、钻进速度快,且发挥承载能力快,能缩短工期、降低造价,对环境扰动小等优点。但该项基础工程技术在我国输变电工程中应用处于技术探索与积累的初级阶段,技术标准可操作性不高,大规模的使用尚未开始。在青藏高原开展输电线路建设,基础施工及相关冻土是工程面临的主要问题,针对该地区特殊环境开展螺旋锚基础应用探索意义重大。

1青藏冻土螺旋锚适用性分析

1.1青藏冻土地区地质特点青藏高原可划分为10个土壤地带,29个土区[14]。东喜马拉雅山南侧山地、察隅河流域,大部分为高山峡谷,土层较薄;川西藏东地区,既有高山、高原,也有众多宽谷和盆地,在盆地等地势平缓地区土层较厚;川青藏接壤地区,已高山等为主,土层薄;治多那曲地区,多年冻土层分布广泛,土层分布普遍较厚;藏南地区,普遍出现冻薄层土;青藏东部地区,在海东等地区存在深厚黄土、粉土分布;青南藏北地区,碎石土等冻薄层土分布广泛;阿里地区,地貌以高原宽谷为主,宽谷地区一般沉积土层较厚;青藏高原西北部昆仑山地区,冻薄层土为主;柴达木盆地,干旱碎石土分布广泛。对于螺旋锚主要适用于黏性土、粉土、松散砂土、松散且碎石粒径较小的碎石土层,另外由于坚硬的冻土层螺旋锚穿越较难,有待螺旋锚旋拧试验验证。1.2适用性分析基础作为将上部结构所承受的各种作用传递到地基上的结构组成部分[15],输电线路螺旋锚基础适用性主要考虑以下因素:(1)基础是否可承受上部结构及地基的各种作用,实现其安全、适用、耐久的基本功能。(2)螺旋锚在现有施工装备水平下能否顺利施工,并满足质量要求。从工程实践看[2],螺旋锚基础可适用于砂土、粉土、黏性土等土层,以及冻土、淤泥质土、黄土等特殊土层。根据研究及应用情况,螺旋锚安装扭矩与其抗拔承载力之间存在联系[2,8],这种联系的经验公式如下:(1)式中:Kt为扭矩系数,一般由经验确定,取值一般10m-1至66m-1;Qu为螺旋锚极限抗拔承载力;T为施工安装扭矩。目前,螺旋锚旋扭施工机械主要通过动力头液压马达产生安装扭矩,现有装备技术条件下动力头可产生超过400kN·m的扭矩,而用于螺旋锚施工的常用的动力头扭矩也超过100kN·m。在土层、基础结构安全可靠的前提下,按照式(1)计算单根螺旋锚理论上抗拔承载力可达到1000kN,多个螺旋锚与承台组成的群锚基础可满足高压、超高压甚至特高压输电杆塔对基础的承载能力要求。青藏高原处于中低纬度地区,海拔高、气候严寒的特点决定着高海拔多年冻土的存在和广泛分布。那曲等藏北地区多年冻土区永冻层下限超过20m,浅部为季节性冻土,覆盖层主要为粉质黏土[16-18]。另外,青藏高原生态脆弱,输电杆塔基础设计选型更适宜采用原状土基础,减少施工扰动,有利于避免冻土工程问题。冻土具有流变、脆性、摩擦角小等特征[19],有利于螺旋锚施工,且加拿大等冻土分布广的国家或地区已大量应用螺旋锚基础。因此,螺旋锚基础适用于除岩石、含大量砾卵石土等地层以外的土层,包括青藏高原冻土,且一般情况下基础埋深范围内有无地下水均适用。

2输电杆塔对基础的作用特点

对于输电线路杆塔基础设计典型工况包括:(1)基础顶面受竖向(上拔或下压)与水平向荷载复合作用。一般存在于输电铁塔对基础的作用,如图2(a)所示。(2)基础顶部受竖向下压、水平向荷载以及倾覆弯矩复合作用。一般存在于输电杆对基础的作用,如图2(b)所示。上拔、倾覆等反应是输电杆塔对基础的作用效应,往往控制输电杆塔基础的设计,而这些作用效应主要由风荷载、导线张力等可变作用产生。

3西藏高原冻土螺旋锚基础结构型式

据统计,110(66)kV~750kV线路输电杆塔水平力与竖向力的比值一般为0.1~0.15。根据螺旋锚的承载特性,其竖向承载能力远大于水平承载能力,对于35kV及以上电压等级的输电杆塔基础不适宜采用单个螺旋锚基础的结构形式。而对于青藏高原多年冻土区,浅部一般为季节性冻土层(厚度一般不大于3.0m),下部为永冻土层,融化状态下处于软塑或流塑状态,那曲地区输电线路基础坑开挖后浅层土状态如图3所示,单锚布置形式难以满足水平承载需要。因此冻土螺旋锚基础适宜采用群锚结构形式。另外,为满足安全可靠、经济适用的要求,需针对不同的作用工况,考虑螺旋锚基础承载特性,优化螺旋锚布置。3.1输电塔基础输电塔对基础的作用力最主要的特点是基顶处弯矩设计计算为零。以基础顶面为分析对象,按照静力平衡,螺旋锚轴心尽可能交汇于基顶输电杆塔对基础作用合力点处,考虑螺旋锚应保持一定间距,减少承载过程中群锚效应,螺旋锚适宜倾斜布置,如图4所示。螺旋锚倾斜布置且交汇于基顶,这种结构形式简洁,受力清晰,可保持螺旋锚承受轴心荷载作用,充分发挥其承载特性及轴心承载能力较高的优势。西藏高原冻土特殊地层分布及物理力学特性,更适合这种螺旋锚布置形式。另外,青藏高原混凝土等材料匮乏,运输成本高,适宜采用预制混凝土或钢构件承台,同时可实现快速安装施工,减少工程活动影响对高原环境影响,且有利于冬季施工。3.2输电杆基础输电杆对基础的作用力与输电杆比较,前者设计计算在基顶处要考虑弯矩作用。一般螺旋锚基础设计计算时,主要通过地基土对承台侧壁的水平力和螺旋锚的不均匀作用来抵抗。对于青藏高原那曲等浅层为软弱土层的地基条件,基顶弯矩作用主要依靠螺旋锚的不均匀作用平衡,因此,螺旋锚更合适采用竖直或小角度倾斜布置,示意如图5所示。承台可采用装配式或现浇混凝土结构。目前,输电杆在青藏高原主要用于110kV及以下电压等级的输电线路工程,因此,螺旋锚基础适宜采用螺旋锚构件竖直布置。

4基础设计

4.1设计方法及参数取值青藏高原螺旋锚基础主要有2种适用条件:土质地基(含浅部季节性冻土层)和多年冻土层(含浅部季节性冻土层)。对于土质地基及浅部冻土层,设计中螺旋锚锚盘均适宜埋置在冻土层以下,工程基础应按最不利条件进行设计,即按浅部冻土层融化状态进行设计,设计方法及参数取值依据相关技术标准。对于多年冻土层,如青藏高原东部地区,多年冻土下线往往超过20m,设计中螺旋锚锚盘适宜穿过季节性冻土层,埋置在永冻层中,按照冻土物理力学性质进行螺旋锚抗拔及抗压工况设计。4.2防腐设计根据我国辽宁等地在运螺旋锚基础腐蚀情况调查看,实际腐蚀程度比预想要低,地基涉及强、微腐蚀环境。螺旋锚基础应进行防腐蚀设计,螺旋锚的防腐蚀措施包括:涂覆防腐蚀涂层(含热镀锌、涂刷防锈漆等)、预留腐蚀裕量等。(1)螺旋锚基础应采取防腐措施,其防腐年限应与螺旋锚基础设计使用寿命一致。(2)锚杆、锚盘均应采取预留腐蚀厚度的设计措施,锚杆内壁与外界环境密闭隔绝时,可不考虑内壁腐蚀。预留厚度量可按类似环境下钢结构腐蚀实测数据确定,也可按式(2)计算:Δδ=V[(1-Pt)t1+(t-t1)],(2)式中:t为设计使用年限;Δδ为t时间内单面腐蚀厚度预留量;V为单面腐蚀速率,可取0.02~0.03mm/a;Pt涂层保护防腐措施的保护效率,一般取50%~95%;t1涂层保护防腐措施的使用年限。(3)钢制承台及近地表的锚杆段外壁宜采取涂层保护防腐蚀措施。当地表土松散、植被发育、地表干湿交替明显时,采取涂层保护措施的锚杆段宜根据环境适当加长。(4)结合运维要求,采用混凝土帽对钢制承台进行防腐保护。

5结论

螺旋锚基础作为一种原状土基础,具有施工快捷、机械化程度高、多环境影响小等特点。我国青藏高原冻土区螺旋锚基础未曾开展相关研究及工程应用,本文通过相应技术探讨,形成以下结论:(1)螺旋锚基础适用于青藏高原冻土区,可满足安全可靠、经济适用要求,且具备相关施工机械等配套技术能力。(2)冻土区输电塔螺旋锚基础结构适宜采用螺旋锚倾斜布置形式,承台采用钢筋混凝土预制或钢制的结构。(3)输电杆基础螺旋锚适宜采用竖直或小角度倾斜的布置形式,同时承台需具备水平承载和抵抗倾覆弯矩作用的能力;基础按最不利状态进行设计,采取涂覆防腐蚀涂层、预留腐蚀裕量等防腐设计措施。螺旋锚基础在青藏高原冻土区输电线路工程中具有广泛的应用前景。在冻土地基螺旋锚基础设计、施工工艺与装备研发等技术方面开展系统研究,形成标准化成套技术,支撑推广应用。