[摘 要] 随着中国的城市化发展,城市人口急剧膨胀所带来的生存空间拥挤、交通阻塞、环境恶化等问题已凸显,如果听任城市无限制地蔓延扩张,将会严重危害中国土地资源。地下空间的发展正式缓解这一危害的重要途径,而盾构、顶管、沉井、爆破、TBM等是地下结构施工的重要技术。本文对这几种方法作详细的介绍。

[关键词] 地下结构的发展、地下结构施工技术、盾构、顶管、沉井、爆破、TBM
 
地下结构的发展概况
人类从利用天然洞穴,到人工构筑地下洞室,从观察、体验和推理中,逐步对地下结构的工作特性有所了解。由洞室承受上部的岩柱重量发展为普氏或泰沙基理论.进而用有限元等方法计算洞室围岩的稳定和应力应变状态。从实际工程上来讲,建成了广布全球的铁路隧道,实藏了各类水电站洞室和地下厂房。铁路隧道的断面比较定型,水电站洞室和地下厂房通常选择在较坚硬的岩体之中,设计和施工相对比较成熟。铁路隧道常遇到的问题是当穿越软弱岩层或地层扩 带时如何加固或改良地层的问题,水电站洞室和地下厂房通常涉及的是对断
一、盾构法
盾构法(Shield Method)是暗挖法施工中的一种全机械化施工方法,它是将盾构机械在地中推进,通过盾构外壳和管片支承四周围岩防止发生往隧道内的坍塌,同时在开挖面前方用切削装置进行土体开挖,通过出土机械运出洞外,靠千斤顶在后部加压顶进,并拼装预制混凝土管片,形成隧道结构的一种机械化施工方法。
 盾构施工方法由以下几个步骤组成:
未命名.jpg
 
盾构法施工概貌
  第一,在置放盾构机的地方打一个垂直井,再用混泥土墙进行加固; 
  第二,将盾构机安装到井底,并装配相应的千斤顶; 
  第三,用千斤顶之力驱动井底部的盾构机往水平方向前进,形成隧道; 
  第四,将开挖好的隧道边墙用事先制作好的混泥土衬砌加固,地压较高时可以采用浇铸的钢制衬砌加固来代替混泥土衬砌。 
盾构法施工中,其隧道一般采用以预制管片拼装的圆形衬砌,也可采用挤压混凝土圆形衬砌,必要时可再浇筑一层内衬砌,形成防水功能好的圆形双层衬砌。 
盾构法施工的优缺点
优点
  1、安全开挖和衬砌,掘进速度快; 
  2、盾构的推进、出土、拼装衬砌等全过程可实现自动化作业,施工劳动强度低。 
  3、不影响地面交通与设施,同时不影响地下管线等设施; 
  4、穿越河道时不影响航运,施工中不受季节、风雨等气候条件影响,施工中没有噪音和扰动; 
  5、在松软含水地层中修建埋深较大的长隧道往往具有技术和经济方面的优越性。 
  盾构法施工的点 
缺点
  1、断面尺寸多变的区段适应能力差; 
2、新型盾构购置费昂贵,对施工区段短的工程不太经济。  
盾构法的历史和发展
未命名.jpg
 
盾构法
用盾构法修建隧道已有 150余年的历史。最早进行研究的是法国工程师M.I.布律内尔,他由观察船蛆在船的木头中钻洞,并从体内排出一种粘液加固洞穴的现象得到启发,在1818年开始研究盾构法施工,并于1825年在英国伦敦泰晤士河下,用一个矩形盾构建造世界上第一条水底隧道(宽11.4米、高6.8米)。 在修建过程中遇到很大的困难,两次被河水淹没,直至1835年,使用了改良后的盾构,才于1843年完工。其后P.W.巴洛于1865年在泰晤士河底,用一个直径2.2米的圆形盾构建造隧道。1847年在英国伦敦地下铁道城南线施工中,英国人J.H.格雷特黑德第一次在粘土层和含水砂层中采用气压盾构法施工,并第一次在衬砌背后压浆来填补盾尾和衬砌之间的空隙,创造了比较完整的气压盾构法施工工艺,为现代化盾构法施工奠定了基础,促进了盾构法施工的发展。20世纪30~40年代,仅美国纽约就采用气压盾构法成功地建造了19条水底的道路隧道、地下铁道隧道、煤气管道和给水排水管道等。从1897~1980年,在世界范围内用盾构法修建的水底道路隧道已有21条。德、日、法、苏等国把盾构法广泛使用于地下铁道和各种大型地下管道的施工。1969年起,在英、日和西欧各国开始发展一种微型盾构施工法,盾构直径最小的只有1米左右,适用于城市给水排水管道、煤气管道、电力和通信电缆等管道的施工。 
  中国于第一个五年计划期间,首先在辽宁阜新煤矿,用直径 2.6米的手掘式盾构进行了疏水巷道的施工。中国自行设计、制造的盾构,直径最大为11.26米,最小为3.0米。正在修建的第二条黄浦江水底道路隧道,水下段和部分岸边深埋段也采用盾构法施工,盾构的千斤顶总推力为108兆牛,采用水力机械开挖掘进。在上海地区用盾构法修建的隧道,除水底道路隧道外,还有地铁区间隧道、通向河海的排水隧洞和取水管道、街坊的地下通道等。 
盾构法的优越性
盾构法施工得到广泛使用,因其具有明显的优越性:①在盾构的掩护下进行开挖和衬砌作业,有足够的施工安全性;②地下施工不影响地面交通,在河底下施工不影响河道通航;③施工操作不受气候条件的影响;④产生的振动、噪声等环境危害较小;⑤对地面建筑物及地下管线的影响较小。 
盾构法施工准备工作
采用盾构法施工时,首先要在隧道的始端和终端开挖基坑或建造竖井,用作盾构及其设备的拼装井(室)和拆卸井(室),特别长的隧道,还应设置中间检修工作井(室)。拼装和拆卸用的工作井,其建筑尺寸应根据盾构装拆的施工要求来确定。拼装井的井壁上设有盾构出洞口,井内设有盾构基座和盾构推进的后座。井的宽度一般应比盾构直径大1.6~2.0米,以满足铆、焊等操作的要求。当采用整体吊装的小盾构时,则井宽可酌量减小。井的长度,除了满足盾构内安装设备的要求外,还要考虑盾构推进出洞时,拆除洞门封板和在盾构后面设置后座,以及垂直运输所需的空间。中、小型盾构的拼装井长度,还要照顾设备车架转换的方便。盾构在拼装井内拼装就绪,经运转调试后,就可拆除出洞口封板,盾构推出工作井后即开始隧道掘进施工(图2)。盾构拆卸井设有盾构进口,井的大小要便于盾构的起吊和拆卸。 盾构法 
盾构法施工工
未命名.jpg
 
主要有土层开挖、盾构推进操纵与纠偏、衬砌拼装、衬砌背后压注等。这些工序均应及时而迅速地进行,决不能长时间停顿,以免增加地层的扰动和对地面、地下构筑物的影响。 
  土层开挖 在盾构开挖土层的过程中,为了安全并减少对地层的扰动,一般先将盾构前面的切口贯入土体,然后在切口内进行土层开挖,开挖方式有:①敞开式开挖。适用于地质条件较好、掘进时能保持开挖面稳定的地层。由顶部开始逐层向下开挖,可按每环衬砌的宽度分数次完成。②机械切削式开挖。用装有全断面切削大刀盘的机械化盾构开挖土层。大刀盘可分为刀架间无封板的和有封板的两种,分别在土质较好的和较差的条件下使用。在含水不稳定的地层中,可采用泥水加压盾构和土压平衡式盾构进行开挖。③挤压式开挖。使用挤压式盾构的开挖方式,又有全挤压和局部挤压之分。前者由于掘进时不出土或部分出土,对地层有较大的扰动,使地表隆起变形,因此隧道位置应尽量避开地下管线和地面建筑物。此种盾构不适用于城市道路和街坊下的施工,仅能用于江河、湖底或郊外空旷地区。用局部挤压方式施工时,要根据地表变形情况,严格控制出土量,务使地层的扰动和地表的变形减少到最低限度。④网格式开挖。使用网格式盾构开挖时,要掌握网格的开孔面积。格子过大会丧失支撑作用,过小会产生对地层的挤压扰动等不利影响。在饱和含水的软塑土层中,这种掘进方式具有出土效率高、劳动强度低、安全性好等优点。 
  推进操纵与纠偏 推进过程中,主要采取编组调整千斤顶的推力、调整开挖面压力以及控制盾构推进的纵坡等方法,来操纵盾构位置和顶进方向。一般按照测量结果提供的偏离设计轴线的高程和平面位置值,确定下一次推进时须有若干千斤顶开动及推力的大小,用以纠正方向。此外,调整的方法也随盾构开挖方式有所不同:如敞开式盾构,可用超挖或欠挖来调整;机械切削开挖,可用超挖刀进行局部超挖来纠正;挤压式开挖,可用改变进土孔位置和开孔率来调整。 
  衬砌拼装 常用液压传动的拼装机进行衬砌(管片或砌块)拼装。拼装方法根据结构受力要求,可分为通缝拼装和错缝拼装。通缝拼装是使管片的纵缝环环对齐,拼装较为方便,容易定位,衬砌圆环的施工应力较小,但其缺点是环面不平整的误差容易积累。错缝拼装是使相邻衬砌圆环的纵缝错开管片长度的1/2~1/3。错缝拼装的衬砌整体性好,但当环面不平整时,容易引起较大的施工应力。衬砌拼装方法按拼装顺序,又可分为先环后纵和先纵后环两种。先环后纵法是先将管片(或砌块)拼成圆环,然后用盾构千斤顶将衬砌圆环纵向顶紧。先纵后环法是将管片逐块先与上一环管片拼接好,最后封顶成环。这种拼装顺序,可轮流缩回和伸出千斤顶活塞杆以防止盾构后退,减少开挖面土体的走动。而先环后纵的拼装顺序,在拼装时须使千斤顶活塞杆全部缩回,极易产生盾构后退,故不宜采用。 
衬砌背后压注 为了防止地表沉降,必须将盾尾和衬砌之间的空隙及时压注充填。压注后还可改善衬砌受力状态,并增进衬砌的防水效果。压注的方法有二次压注和一次压注。二次压注是在盾构推进一环后,立即用风动压注机通过衬砌上的预留孔,向衬砌背后的空隙内压入豆粒砂,以防止地层坍塌;在继续推进数环后,再用压浆泵将水泥类浆体压入砂间空隙,使之凝固。因压注豆粒砂不易密实,压浆也难充满砂间空隙,不能防止地表沉降,已趋于淘汰。一次压注是随着盾构推进,当盾尾和衬砌之间出现空隙时,立即通过预留孔压注水泥类砂浆,并保持一定的压力,使之充满空隙。压浆时要对称进行,并尽量避免单点超压注浆,以减少对衬砌的不均匀施工荷载;一旦压浆出现故障,应立即暂停盾构的推进。 
盾构法施工时,还须配合进行垂直运输和水平运输,以及配备通风、供电、给水和排水等辅助设施,以保证工程质量和施工进度,同时还须准备安全设施与相应的设备。
二、顶管
未命名.jpg
 
顶管技术是一项用于市政施工的非开挖掘进式顶管技术。优点在于不影响周围环境或者影响较小,施工场地小,噪音小。而且能够深入地下作业,这是开挖埋管无法比拟的优点。但是顶管技术也有缺点,施工时间较长,工程造价高等。 
  目前世界上的顶管技术已经发展到了十分成熟的阶段,各种各样的顶管方式方法出现。但是,万变不离其宗,顶管施工技术的原理都是一样的。一般都是垂直地面做工作井,然后用高压液压千斤顶,将水泥或者钢制管道顶入地下,各种技术的差别就在于运输管道内挖掘出来的泥土,石头等渣子的方法,有人工的,有水抽式的,先进的还有遥控的。 
  总之顶管是一项不容易施工好的工程,也是一种不太为人知的工程。 
  1.就是非开挖施工方法,是一种不开挖或者少开挖的管道埋设施工技术。 
  非开挖工程技术彻底解决了管道埋设施工中对城市建筑物的破坏和道路交通的堵塞等难题,在稳定土层和环境保护方面凸显其优势。这对交通繁忙、人口密集、地面建筑物众多、地下管线复杂的城市是非常重要的,它将为城市创造一个洁净、舒适和美好的环境。 
  非开挖技术是近几年才开始频繁使用的一个术语,它涉及的是利用少开挖,即工作井与接收井要开挖,以及不开挖,即管道不开挖技术来进行地下管线的铺设或更换,顶管直径DN800—4500。通过工作井把要埋设的管子顶入土内,一个工作井内的管子可在地下穿行1500米以上,并且还能曲线穿行,以绕开一些地下管线或障碍物。 
  它的技术要点在于纠正管子在地下延伸的偏差。特别适用于大中型管径的非开挖铺设。具有经济、高效,保护环境的综合功能。这种技术的优点是:不开挖地面;不拆迁,不破坏地面建筑物;不影响交通;不破坏环境;施工不受气候和环境的影响;不影响管道的段差变形;省时、高效、安全,综合造价低。 
  该技术在我国沿海经济发达地区广泛用于城市地下给排水管道、天燃气石油管道、通讯电缆等各种管道的非开挖铺设。它能穿越公路、铁路、桥梁、高山、河流、海峡和地面任何建筑物。采用该技术施工,能节约一大笔征地拆迁费用、减少对环境污染和道路的堵塞,具有显著的经济效益和社会效益。 
  1、发展及工作原理: 
  顶管施工是继盾构施工之后而发展起来的一种地下管道施工方法,它不需要开挖面层,并且能够穿越公路、铁道、河川、地面建筑物、地下构筑物以及各种地下管线等。顶管施工借助于主顶油缸及管道间中继间等的推力,把工具管或掘进机从工作井内穿过土层一直推到接收井内吊起。与此同时,也就把紧随工具管或掘进机后的管道埋设在两井之间,以期实现非开挖敷设地下管道的施工方法。 
  2、分类 
  目前,在顶管施工中最为流行的有三种平衡理论: 
  气压平衡、泥水平衡和土压平衡理论。 
  顶管施工最突出的特点就是适应性问题。针对不同的地质情况、施工条件和设计要求,选用与之适应的顶管施工方式,如何正确地选择顶管机和配套辅助设备,对于顶管施工来说将是非常关键的. 
2.模具顶出系统的一部分,顶管也叫司筒 是中空的顶针。
三、沉井法
在地面下沉预制井筒的施工方法。在井口位置,预制好沉井刃脚和一段井壁,边掘边沉,再在地面浇筑,接长井壁,继续下沉。此法开始多用于水利工程,工艺简单,通常采用砖井壁,人工挖掘,自重下沉。沉井深度一般仅20m左右。1839年法国创造了压气沉井法,因下沉深度有限,并有损工人健康,到20世纪50年代渐被淘汰。1894年德国创造了淹水沉井法。1944年日本向沉井壁后施放压缩空气,减少井壁与土层的摩擦阻力获得成功。1952年匈牙利和瑞士创造了触变泥浆液体减阻的新方法。中国于1958年创造了震动沉井法;1969年起采用壁后泥浆淹水沉井,建成了30多个井筒,最深井达192.5m。 
  沉井结构  由套井、井壁和刃脚三部分组成。套井(即锁口)是靠近地表预先作好的一段大于沉井外径1.5m左右的井筒,用以保护井口,安设导向装置和贮存减阻材料。沉井井壁就是井筒的永久井壁,应有足够的强度,并满足下沉所需的重量。一般为钢筋混凝土结构,壁厚1m左右,随沉井下沉不断在井口浇筑接长。刃脚位于沉井井壁最下端,多用钢材制造,刃尖角通常为 30°,刃脚高3m,刃脚外半径比井壁外半径大100~300mm,以便下沉后在井壁四周形成一个环形空间。 
  施工时沉井利用钢刃脚插入土层,工作面不断破土排渣,依靠井壁自重不断下沉,当沉井刃脚达到基岩后,即行封底与壁后注浆固井。 
  沉井法分类  按井内淹水与否分为不淹水沉井和淹水沉井两种。淹水沉井又分壁后泥浆淹水沉井和壁后施放压气淹水沉井。按井壁下沉动力可分为自重沉井和加载沉井。后者又分为震动沉井和压水沉井。 
  不淹水沉井  在沉井内排水,工人在井底工作面掘进。除井壁在地面浇筑、随掘进随下沉外,其他工序和普通凿井法相同。由于排水造成井内外压力不平衡,下沉深度受到限制,本法不宜在涌水大、流砂层厚的表土层采用。 
  淹水沉井  特点是:井内淹水,保持井内外压力平衡,可防止涌砂冒泥;壁后灌注减阻介质;掘进与排渣均在水下完成;一般采用水枪或钻机破土、压气排液器排渣。该法工艺较简单,需用设备少,机械化程度高,工人不下井,作业条件好,成本较低,除砾卵石层外,一般均可采用。但由于量测和纠偏技术尚未完全解决,沉井下沉速度和偏斜程度较难掌握,往往影响工期。 
  壁后泥浆淹水沉井  在整个施工过程中保持井筒内淹水水位高于地下水位 1~2m。在沉井壁后环形空间灌注触变泥浆,它是以膨润土为主要原料,加水和化学处理剂(碱、羧甲基纤维素)混合搅拌而成的一种液态减阻材料,其特性是静止时为不易流动的凝胶状态,搅动时变成易于流动的溶胶状态。通过埋设在井壁内的管路,将触变泥浆灌注在沉井壁后的环形空间内,把井壁和地层隔开,借助泥浆柱压力,维护土层稳定,防止塌陷并可在沉井下沉时减少沉井外壁的摩擦阻力。用触变泥浆减阻,经济效益较好;但在恢复井壁与土层的固着力和保证泥浆护壁的可靠性方面,还有待研究改进。 
  壁后压气淹水沉井  在沉井外壁上,按压缩空气可能克服的作用面积,预留气龛,在气龛底部设喷气小孔与井壁内的压气管路相连,构成施放压气的通道。沉井需下沉时,按施工的要求压力依次打开管路阀门,压气由喷气孔喷出,沿井壁外围扩散上升,形成一个空气帷幕,减少周边的摩擦阻力,促使井筒下沉(见图)。该法可控制施放压气的时间,有利于控制井筒偏斜。日本用本法施工,最深沉井达200.3m,偏斜仅为0.1%。
震动沉井  在预制的薄壁长段井筒上部装有井帽,在其上安置震动机,带动井筒震动,加大井筒的下沉力,并促使井壁四周土壤液化,减少沉井周边的摩擦阻力,加快下沉速度。本法由建桥工程使用的震动管柱法移植而来,自1958年起,在中国淮北矿区用该法相继建成了十多个井筒,优点是机械化程度高,成井速度快,成本低。由于震动机的加载有一定限度,在遇到砾卵石层时,井壁容易断裂,且地面及井筒周围受震动影响,适用条件受到限制。
未命名.jpg
 
压水沉井  加载沉井的另一种形式,在沉井刃脚上增设伞形钢结构底罩,把井筒和刃脚隔开,伞上灌水,增加荷载。伞下作为破土排渣的空间,破土使用五组装在刃脚四周斜面处和伞顶部的固定水枪,泥渣水自伞顶中心的排渣管排出。本法在中国开滦建井工程处首次试用,下沉深度达30.1m。 
 
四、爆破
利用炸药在空气、水、土石介质或物体中爆炸所产生的压缩、松动、破坏、抛掷及杀伤作用,达到预期目的的一门技术。研究的范围包括:炸药、火具的性质和使用方法,装药(药包)在各种介质中的爆炸作用,装药对目标的接触爆破和非接触爆破,各类爆破作业的组织与实施。
爆破技术在军事上主要用于:军事工程的土石方作业,克服障碍物,破坏军事目标,杀伤敌人,销
未命名.jpg
 
毁武器装备和弹药等。实施爆破作业时,根据任务、时限、目标的具体情况和兵力、器材等条件,可选用内部装药爆破或外部装药爆破。内部装药爆破是将装药装入或设置在目标内部实施的爆破。这种爆破方法能充分利用炸药爆炸的能量,但作业较复杂,所需时间长,多用于国防工程施工和战时时间充裕情况下的土石方爆破作业,如开采石料、改造地形、挖掘坑道工事、开挖路基和工事平底坑、构筑防坦克壕等;也可用于破坏坚固目标,如永备工事、桥墩、混凝土路面、机场跑道等。外部装药爆破是将装药配置在目标外部实施的爆破。这种爆破方法需要的炸药较内部装药爆破多,但作业简便、迅速,多用于时间紧迫情况下的破坏作业,如破坏桥梁、隧道、机场、港口、仓库和武器装备等。其装药配置根据战术技术要求和被破坏目标的结构确定。爆破还可用于平整河底、加深河床、清除水中障碍物和爆破冰层、流冰、冰坝等。装药的形状有集团装药(集中药包)、直列装药(延长药包)和聚能装药(聚能药包)。装药的重量按目标的几何尺寸、材料强度和配置情况计算确定。起爆装药通常采用导火索点火法、电点火法、导爆管点火法以及与上述点火法结合使用的导爆索传爆法。实施爆破作业时必须严格遵守有关安全规则。 
理论
  装药在空气中、水中爆炸作用的理论基础是流体动力学。对于球形、圆柱形和平板状装药,爆炸荷载通常只按一维问题考虑。空气中接触爆破,研究装药爆炸后爆轰波作用于紧贴固壁的压力和冲量。空气中非接触爆破,研究装药对不同距离目标的破坏、杀伤作用。水中爆破,主要研究冲击波、气泡和二次压力波对目标的破坏作用。 
  装药在土石中的爆破理论,基于人们对爆破现象和机理的不同认识,有多种观点,大体可归纳为三类: 
  持能量平衡理论观点的人认为,内部装药爆炸所产生的能量,主要作用是克服土石介质自重和分子间粘聚力;在平地爆破形成的漏斗坑容积与装药量成正比。当只有一个自由面,要求爆破后形成的漏斗坑有一定的直径和深度时(平地抛掷爆破),所需装药量与最小抵抗线(装药中心至自由面的最短距离)的三次方成正比,并与炸药品种、土石类别、填塞条件等因素有关。当有两个自由面时(露天采石爆破),如最小抵抗线不大,所需装药量与最小抵抗线的二次方成正比;如最小抵抗线较大,所需装药量与最小抵抗线的三次方成正比;其他影响因素与一个自由面相同。 爆破 
  持流体动力学理论观点的人认为,将土石介质看作是不可压缩的理想流体,认为内部装药爆炸所产生的能量,可在瞬间传给周围介质使之运动,故可引用流体动力学基本理论和运动方程解决爆破参数的计算问题,由此推导得出土石方爆破药量的的计算公式。 
  持应力波和气体共同作用理论观点的人认为,内部装药爆炸所产生的高温高压气体,猛烈冲击周围土石,从而在岩体中激起呈同心球状传播的应力波,产生巨大压力,当压力超过土石强度时,土石即被破坏。应力波属动态作用,开始以冲击波形式出现,经作功后衰减为弹性波。爆炸气体的膨胀过程近似静态作用,主要加强土石质点径向移动,并促使初始裂缝扩展。因此,根据土石性质的差异,采用相应的合理的技术措施,就能有效地满足不同的爆破要求。 
20世纪80年代中期以后,爆破技术的发展趋势主要是:进一步研究炸药的爆轰机理和介质破坏机理,炸药对各类结构物的爆炸作用,以不断提高爆破效果;根据工程条件,研究建立各种数学模型,运用电子计算机计算爆破参数,逐步实现优化方案设计。研究实施爆破中提高炸药能量的有效利用率,最大限度地减弱其危害作用。研究将微电子技术用于爆破技术,满足适时和延期爆破的要求,以获取最佳效果。在军事爆破方面,针对现代战争的特点,将着重研究野战条件下实施快速爆破作业的各种方法,建立相应的爆破器材系列;研究核爆破在工程保障中的应用。
五、TBM法
TBM(Tunnel Boring Machine)隧道掘进机,是利用回转刀具开挖,同时破碎洞内围岩及掘进,形成整个隧道断面的一种新型、先进的隧道施工机械;相对于目前常用的方法,TBM集钻、掘进、支护于一体,使用电子、信息、遥测、遥控等高新技术对全部作业进行制导和监控,使掘进过程始终处于最佳状态。在国际上,现已广泛应用于水利水电、矿山开采、交通、市政、国防等工程中。
 TBM 隧道施工法就是利用TBM来掘进的隧道工法 
  (1)在岩石中开挖隧道的TBM:通常用这类TBM在稳定性良好、中~厚埋深、中~高强度的岩层中掘进长大隧道。这类掘进机所面临的基本问题是如何破岩,保持掘进的高效率和工程顺利。 
  (2)在松软地层中掘进隧道的TBM:通常用这类TBM在具有有限压力的地下水位以下的基本均质的软弱地层中开挖有限长度的隧道。这类掘进机所面临的基本问题是空洞、开挖掌子面的稳定、市区地表沉降等。 
  对于全断面隧道掘进机,目前在国内有两种提法,其一是岩石掘进机(TBM),其二是盾构机。TBM就是适合硬岩掘进的隧道掘进机,盾构机指的是适于在软岩、土中的隧道掘进机。这种说法有些言不符实,因为现在许多硬岩TBM也采用盾构技术,而TBM本来就是隧道掘进机的意思。鉴于学术及现实中称法混乱,造成许多麻烦,所以本文建议国内采用统一称法,采用“硬岩TBM”和“软岩TBM”两种来规范。其中硬岩TBM又可分为敞开式TBM、护盾式TBM。 
硬岩TBM适用于山岭隧道硬岩掘进,代替传统的钻爆法,在相同的条件下,其掘进速度约为常规钻爆法的4~10倍,最佳日进尺可达150m;具有快速、优质、安全、经济、有利于环境保护和劳动力保护等优点。特别是高效快速可使工程提前完工,提前创造价值,对我国的现代化建设有很重要的意义。
而软岩TBM适用于软弱性围岩施工的隧道掘进机,是目前城市地铁建设中速度快、质量好、安全性能高的先进技术。采用盾构机施工的区间隧道,可以做到对土体弱扰动,不影响地面建筑物和交通,减少地上、地下的大量拆迁。这两种设备的技术开发与应用,在我国地下工程领域具有十分广阔的前景。
 参考书目 
 余力、巴肇伦、卓鑫然编著:《煤矿沉井法凿井》,煤炭工业出版社,北京,1984
《露天大爆破》编写组编:《露天大爆破》,第1版,冶金工业出版社,北京,1979。 
U.兰格福斯、B.基尔斯特隆著,《岩石爆破现代技术》翻译组译:《岩石爆破现代技术》,冶金工业出版社,北京,1983。(U.Langefors & B.Kihlstrom, The Modern Technique of Rock Blɑsting,John Wiley & Sons Inc., New York, London, Sydney, 1978.)