[摘要]本文通过对隧道监控量测的方法及成果斤进行分析,以及监控量测数据处理及分析,进一步研究隧道监控量测技术,为判断围岩稳定性、支护、衬砌可靠性、二次衬砌合理施作时间以及修改施工方法、调整围岩级别、变更支护设计参数提供依据。 

  [关键字]隧道 监控 量测技术 研究 

  [中图分类号] U45 [文献码] B [文章编号] 1000-405X(2013)-5-192-2 

  1 监控量测的内容 

  1.1隧道监控量测的编制依据 

  中华人民共和国行业标准《公路隧道设计规范》(JTJD70-2004);中华人民共和国行业标准《公路隧道施工技术规范》(JTGF60—2009);中华人民共和国行业标准《公路工程地质勘察规范》(JTJ064-98);中华人民共和国行业标准《公路工程技术标准》(JTGB01—2003);中华人民共和国行业标准《公路工程抗震设计规范》(JTJ004—89);中华人民共和国国家标准《锚杆喷射混凝土支护技术规范》(GB50086—2001);中华人民共和国国家标准《公路工程质量检验评定标准》(JTGF80/1-2004);中华人民共和国国家标准《工程测量规范》(GB50026-2007)。 

  1.2监控量测项目 

  (1)观察地质及支护状态,包括掌握隧道实际围岩状态、分析隧道掌子面的稳定状态、预测前方隧道围岩情况、评价初期支护的稳定性。(2)量测周边收敛与拱顶下沉情况,包括为隧道支护结构稳定性分析提供依据、为二次衬砌浇筑选择最佳时机;为隧道施工工艺、支护衬砌参数优化提供参考。(3)量测地表下沉情况,包括判断隧道开挖对洞口边仰坡、浅埋地面是否产生显著影响,分析该影响的范围、程度及其与隧道施工的时空关系。 

  2 隧道监控量测的方法及成果分析 

  2.1地质及支护状态观察 

  2.1.1量测方法。掌子面地质观察采用目测配合数码相机进行观测,及时绘制掌子面地质素描,记录围岩的岩性、产状、节理等详细特征,断层、破碎带等不良地质特征,同时记录地下水的水量、分布、压力、类型等特征,填写掌子面地质观察记录;初期支护状态采用目测观察为主,对初期支护喷砼、钢支撑、锚杆出现的外鼓、裂缝、剥落、扭曲等异常现象,用数码相机、塞尺、卷尺等进行跟踪观测并做好原始记录。 

  2.1.2成果分析与信息反馈 

  (1)通过掌子面地质观察,分析围岩稳定状态,评估出现局部掉块、塌方、涌水等灾害的可能性,出现异常情况,第一时间通报施工单位,及时指导施工,并将异常情况、相关建议汇报业主和监理等相关部门;(2)对初期支护出现的异常情况,分析出现异常情况的原因,根据具体原因、问题的严重性向业主、监理和承包商汇报,并提出处理建议;(3)针对初期支护异常情况,开展跟踪监测,绘制空间分布图和时间发展曲线,预测发展趋势,及时预警。 

  2.2隧道周边收敛监测 

  2.2.1量测方法。采用数显收敛计进行洞内收敛量测;对于大变形、塌方等危险区域,必要时采用隧道位移实时监测系统进行实时监测。 

  2.2.2成果分析与反馈。(1)每次观测后现场计算位移发展增量,出现异常情况,重新测量排除操作失误后立即报告相关部门。(2)每次测回数据交数据处理员输入计算机,进行位移增量、位移发展速率的计算,绘制位移—时间曲线和位移发展速率—时间曲线,并应用函数拟合和灰色预测等方法进行位移发展短、长期预测。(3)根据分析结果,判断隧道变形管理等级,出现非正常情况,立即向相关部门报告。(4)当隧洞周边水平收敛速度以及拱顶或底板垂直位移速度明显下降,隧洞周边水平收敛速度小于0.2mm/d,拱顶垂直位移速度小于0.1mm/d,隧洞位移相对值已达到总相对位移量的90%以上时,向有关部门报送二次衬砌施工报告。 

  2.3拱顶下沉监测 

  2.3.1量测方法。在进行拱顶下沉量量测时,对隧道拱顶的实际位移值进行量测,是相对于不动点的绝对位移,其必须与设计拱顶标高进行比较。 

  2.3.2成果分析和信息反馈。(1)每次观测后现场计算位移发展增量,出现异常情况,重新测量排除操作失误后立即报告相关部门;(2)每次测回数据交数据处理员输入计算机,进行位移增量、位移发展速率的计算,绘制位移~时间曲线和位移发展速率~时间曲线,并应用函数拟合和灰色预测等方法进行位移发展短、长期预测。 

  2.4地表下沉监测 

  2.4.1量测方法。在隧道浅埋地段和施工过程中可能产生地表塌陷之处埋设沉降观测点,并在预计下沉断面以外4倍洞径处设水准基点,作为各测点高程测量的基准,从而计算出各测点的下沉量在选定的监测区域内,设测量方便牢固可靠的测点,在深30cm的土坑内打入50cm长的20钢筋,外露45cm并用混凝土填实,按顺序编号并做好标识便于寻找进行测量时,用精密水准仪监测测点的绝对下沉量。 

  2.4.2成果分析与反馈。(1)基准点不要选择隧道经过的山体上,要保证基准点的稳固。(2)基准的高度要选择好,可以使用水准仪一镜可以测量全部的沉降观测点,不要频繁的转站。(3)测量顺序应先读后视读数,然后依次观测各沉降点,每个点读一次数,再读后视读数(必要时应动一下水平仪的位置),如此往复3次,成果取平均值。应该将高程数据引测到基准点上,可以对隧道埋深情况进行了解。 

  3 隧道监控量测数据处理及分析 

  3.1隧道量测数据的分析方法 

  回归分析是目前量测数据数学处理的主要方法,是对一系列具有内在规律的量测数据进行处理,通过处理与计算找到两个变量之间的函数式关系,从而获得能较准确反映实际情况的U-t曲线图,然后可以预测围岩的最终位移值和各阶段的位移速率[3~4]。 

  3.2量测数据处理工程实例 

  3.2.1量测基本情况 

  3.2.2监控量测数据与分析 

  (1)周边收敛数据及分析 

  隧道周边收敛的数据采集采用数显收敛计进行洞内收敛量测,由于本文篇幅有限,仅以K26+140断面量测的数据为例进行分析,见表2。 

  (2)拱顶下沉数据及分析 

  对于拱顶下沉量测采用精密水准仪、水准尺、钢卷尺进行测量,精度为0.1mm;对于大变形、塌方等危险区域,必要时采用隧道位移实时监测系统进行实时监测。根据表3数据可知,K26+140断面的平均下沉速率均小于0.30mm/d,且该测试项目位移速率明显收敛,根据规范要求,可得出该各断面拱顶已处于稳定状态。通过图1分析可知,随着时间的增大,断面拱顶下沉值逐渐趋于稳定,实测K26+140断面拱顶累计下沉量终值为9mm。 

  3.3结论 

  (1)通过本阶段对洞内收敛及拱顶下沉监测结果分析,收敛值及沉降值比较稳定,未出现数值突然增大的现象。(2)本阶段对观音山隧道掌子面地质情况、初期支护、地表边坡进行了观察,未出现开裂及塌方情况。 

  4 结论 

  实践证明通过现场监控量测,可以对围岩和支护系统的力学状态做出判断,可为判断围岩稳定性、支护、衬砌可靠性、二次衬砌合理施作时间以及修改施工方法、调整围岩级别、变更支护设计参数提供依据。